Monthly Archives: September 2019

Aero-tactile integration during speech perception: Effect of response and stimulus characteristics on syllable identification

Jilcy Madappallimattam, Catherine Theys and I recently published an article demonstrating that aero-tactile stimuli does not enhance speech perception during open-choice experiments the way it does during two-way forced-choice experiments.

The abstract (with citation method modified) is as follows:

Integration of auditory and aero-tactile information during speech perception has been documented during two-way closed-choice syllable classification tasks (Gick and Derrick, 2009), but not during an open-choice task using continuous speech perception (Derrick et al., 2016). This study was designed to compare audio-tactile integration during open-choice perception of individual syllables. In addition, this study aimed to compare the effects of place and manner of articulation. Thirty-four untrained participants identified syllables in both auditory-only and audio-tactile conditions in an open-choice paradigm. In addition, forty participants performed a closed-choice perception experiment to allow direct comparison between these two response-type paradigms. Adaptive staircases, as noted by Watson (1983). Were used to identify the signal-to-noise ratio for identification accuracy thresholds. The results showed no significant effect of air flow on syllable identification accuracy during the open-choice task, but found a bias towards voiceless identification of labials, and towards voiced identification of velars. Comparison of the open-choice results to those of the closed-choice task show a significant difference between both response types, with audio-tactile integration shown in the closed-choice task, but not in the open-choice task. These results suggest that aero-tactile enhancement of speech perception is dependent on response type demands.

Derrick, D., O’Beirne, G. A., De Rybel, T., Hay, J., and Fiasson, R. (2016). “Effects of aero-tactile stimuli on continuous speech perception,” Journal of the Acoustical Society of America, 140(4), 3225.

Gick, B., and Derrick, D. (2009). “Aero-tactile integration in speech perception,” Nature 462, 502–504.

Watson, A. B. (1983). “QUEST: A Bayesian adaptive psychometric method,” Perceptual Psychophysics, 33(2), 113–120.

TreeForm for Windows reverted to version 1.03

Apologies to all Windows users, but my revised version of TreeForm does not seem to run on your system due to the fact that Java developers have effectively ruined internationalization for windows runs. It will be a least 1 month before I can even begin to have time to address this issue.

I now have SourceForge automatically send you version 1.03 (as TreeFormWindows.zip) if you are running Windows, and that one should work for most users still. Apple users still benefit from the new and improved version.

Apologies for the inconvenience.

Ultrasound Transducer Stabilizer for Children.

Our three-dimensional printable ultrasound transducer stabilizer has been a huge success. It is in use here at the University of Canterbury, as well as the University of Michigan, Hiroshima University, University of California, Los Angeles, and soon at the University of British Columbia. (And it is available at Western Sydney University).

However, Phil Hoole at Ludwig Maximilian University of Munich figured out that the transducer stabilizer does *not* work with Children. He developed a solution to that problem, and I am making it available here. Within this zip file, there is a new probe holder. The base and clip-holder should be printed as is. Each remaining file needs to be scaled to 75% of their size and then printed. Each file marked with X2 needs to be printed *twice*.

I will put photos of this version of the probe-holder online once I have printed new copies and sewn all the pieces together sometime in October.